Topics: Statistics
(theorem)
Let , with (i.e. a parameter in a parameter space).
Let be an estimator of . Then:
In other words, the Cramér-Rao lower bound () provides a lower bound for ’s variance.
Search
Topics: Statistics
(theorem)
Let X1,…,Xn∼f(x∣θ), with θ∈Θ (i.e. a parameter in a parameter space).
Let T be an estimator of θ. Then:
In other words, the Cramér-Rao lower bound (CRLB(θ)) provides a lower bound for T’s variance.